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1616 18th Street NW, Washington, DC 20009-2525, USA

Received 25 August 1999

Abstract. Representations and convergence criteria for one-dimensional (1D) and two-
dimensional (2D) lattice sums of generalized hypergeometric functions pFp+1 are derived by
using apparently new integral representations for the latter functions, and 1D and 2D forms of
the Poisson summation formula. These lattice sum representations concisely unify and generalize
various specializations given previously by several authors, and should prove useful in analysing
finite-size effects in systems subjected to non-periodic boundary conditions.

1. Introduction

We consider the two-dimensional (2D) lattice sums of the generalized hypergeometric functions
pFp+1 (p � 0) defined for x > 0 by

W(α, β; x) ≡
∑
m∈Z

∑
n∈Z

(−1)mα+nβ
pFp+1[(ap); (bp+1); −(m2 + n2)x2] (1.1a)

and

R(α, β; x) ≡
∞∑

m=1

∞∑
n=0

(−1)mα+nβ
pFp+1[(ap); (bp+1); −(m2 + n2)x2] (1.1b)

where (α, β) ∈ {(1, 1), (0, 0), (1, 0), (0, 1)}, and Z is the set of all integers (positive, negative
and zero). For conciseness in the following we define

� ≡
p+1∑
k=1

bk −
p∑

k=1

ak. (1.1c)

Several authors (see [1–3, 5, 6, 11]) have considered and found essentially elementary
algebraic representations for the latter two lattice sums specialized by replacing the generalized
hypergeometric function by either the Bessel function of the first kind (i.e. setp = 0, b1 = 1+ν)
or by the trigonometric sine function (i.e. set p = 0, b1 = 3

2 ). Moreover, in [1, 7, 11]
representations for these specializations of W(α, β; x) extended to higher dimensions were
also deduced. All of the work just alluded to was motivated by problem 92-11 in SIAM
Review which was proposed by Henkel and Weston in connection with finite-size scaling
of the three-dimensional spherical model of ferromagnetism (see the editorial note in [2]).
Aside from the interesting mathematical properties of the lattice sums being considered, Allen
and Pathria [1] have noted that representations for such sums and their higher-dimensional
generalizations should prove useful in analysing finite-size effects in systems subjected to
non-periodic boundary conditions.
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3326 A R Miller

By properly splitting up the summation domain Z × Z, we see that the sums defined in
equations (1.1a) and (1.1b) are related to each other by

R(α, β; x) = − 1
4 + 1

4W(α, β; x) + 1
2

∞∑
m=1

(−1)mα
pFp+1[(ap); (bp+1); −m2x2]

− 1
2

∞∑
m=1

(−1)mβ
pFp+1[(ap); (bp+1); −m2x2] (1.2)

where (α, β) ∈ {(1, 1), (0, 0), (1, 0), (0, 1)}. Thus, when α = β it is apparent that

R(α, α; x) = − 1
4 + 1

4W(α, α; x).
In the following we shall consider (in view of equation (1.2)) the related and somewhat

more general one-dimensional (1D) sum

S(α; x) ≡
∑
m∈Z

eiπαm
pFp+1[(ap); (bp+1); −m2x2] (1.3)

where α is a real number and x > 0. Thus, when α ∈ {0, 1}, it is easy to see that
∞∑

m=1

(−1)αmpFp+1[(ap); (bp+1); −m2x2] = − 1
2 + 1

2S(α; x). (1.4)

In sections 2 and 4 we shall discuss and develop criteria for the convergence of the sums
S(α; x) andW(α, β; x), whereα andβ are real numbers. Then in sections 3 and 4, respectively,
representations for these sums will be derived. In the following an asterisk (*) is used only in
conjunction with a k-summation, so that (ap)∗ means that ak is not included in the sequence
of parameters (ap) for the current value of the summation index k; thus, for example,

�((ap)
∗ − ak) ≡

p∏
j=1
j �=k

�(aj − ak)

where � is the gamma function. If p = 0 in such a product, it is empty and reduces to unity.
The 1D sums in equation (1.2) are generalizations of Schlömilch series to which they

reduce when p = 0. Although these sums of generalized hypergeometric functions have been
evaluated in [8] for p = 1 and in [10] for p � 1, we shall derive (as already mentioned)
a representation for S(α; x) which gives via equation (1.4) the unified result for α ∈ {0, 1},
x > 0:
∞∑

m=1

(−1)mα
pFp+1[(ap); (bp+1); −m2x2] = −1

2
+

√
π

2x

�((bp+1))

�((ap))

�((ap) − 1
2 )

�((bp+1) − 1
2 )

×
(α+2m)2π2�4x2∑

m∈Z
p+1Fp

[
3
2 − (bp+1) ;
3
2 − (ap) ;

(α + 2m)2π2

4x2

]

+

√
π�((bp+1))

�((ap))

p∑
k=1

�( 1
2 − ak)�((ap)

∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak

×
(α+2m)2π2�4x2∑

m∈Z
((α + 2m)2π2)ak−

1
2

×p+1Fp

[
1 + ak − (bp+1) ;
1
2 + ak, 1 + ak − (ap)

∗ ;
(α + 2m)2π2

4x2

]
(1.5)
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where convergence of the sum and generalized hypergeometric functions are determined by
lemma 1 (see section 2). Thus, whenα = 1, equation (1.5) is valid for (�− 1

2 )π < x < (�+ 1
2 )π ,

where � is a non-negative integer, provided that for 1 � k � p

Re(ak) > 0 Re(�) > 1
2

and if x = (� + 1
2 )π , then

Re(ak) > 0 Re(�) > 3
2 .

When α = 0, equation (1.5) is valid for �π < x < (� + 1)π , provided that

Re(ak) > 1
2 Re(�) > 1

2

and if x = (� + 1)π , then

Re(ak) > 1
2 Re(�) > 3

2

where � is given by equation (1.1c).
The result given by equation (1.5) is slightly more general than the theorem in [10]

(equations (3.3) and (3.4) therein), since it includes the cases x = (� + 1)π and (� + 1
2 )π

corresponding, respectively, to α = 0 and 1. Furthermore, we tacitly assume values of the
parameters for which expressions make sense. And we adapt throughout the convention that
when the upper limit of a summation is less than the initial value of the lower limit, then the
summation vanishes.

2. Convergence of the sums S(α; x) and W (α, β; x)

We shall need the asymptotic result (see [9, equation (2.2a)]) for generalized hypergeometric
functions:

pFp+1[(ap); (bp+1); −z2]

=
{

p∑
k=1

Ak

(
1

z2

)ak

+ Ap+1

(
1

z2

)η

cos

[
2z − πη + O

(
1

z

)]}[
1 + O

(
1

z2

)]
(2.1a)

where |z| → ∞, | arg z| < 1
2π , the Ak (1 � k � p + 1) are constants dependent on the

parameters of the generalized hypergeometric function, and

η ≡ 1
2

(
� − 1

2

)
(2.1b)

where � is given by equation (1.1c).
Now, without loss of generality, since α is an arbitrary real number, we may examine the

convergence of either end of the bilateral series in equation (1.3) that defines S(α; x). Thus, by
setting z = mx in equation (2.1a), multiplying both sides of the latter by exp(iπαm), and for
some sufficiently large fixed integer M , summing the result over m � M , we have for x > 0

∑
m�M

eiπαm
pFp+1[(ap); (bp+1); −m2x2] =

{
p∑

k=1

Ak

x2ak

∑
m�M

eiπαm

m2ak

+
1

2

Ap+1

x2η

(
e−iω

∑
m�M

ei(πα+2x)m

m2η
+ eiω

∑
m�M

ei(πα−2x)m

m2η

)}[
1 + O

(
1

x2

)]
(2.2)

where ω ≡ πη − O(1/x) and η is given by equation (2.1b).
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We observe that the convergence of S(α; x) is determined by the convergence of the three
m-summations in equation (2.2), all of which have the form

∑
m exp(iπβm)m−z, where β is

a real number. This sum converges for Re(z) > 1, when β is a multiple of 2; otherwise it
converges for Re(z) > 0 (see [4, pp 59–60]). Thus, we deduce

Lemma 1. For real α and x > 0, the sum S(α; x) converges under the conditions of each of
the following four cases where 1 � k � p.

(a) If α is not a multiple of 2, and πα ± 2x are not multiples of 2π , then

Re(ak) > 0 Re(�) > 1
2 .

(b) If α is a multiple of 2, and πα ± 2x are not multiples of 2π , then

Re(ak) > 1
2 Re(�) > 1

2 .

(c) If α is not a multiple of 2, and one of πα ± 2x is a multiple of 2π , then

Re(ak) > 0 Re(�) > 3
2 .

(d) If α is a multiple of 2, and one of πα ± 2x is a multiple of 2π , then

Re(ak) > 1
2 Re(�) > 3

2 .

Furthermore, for real α and x > 0, the sum S(α; x) converges absolutely provided that

Re(ak) > 1
2 Re(�) > 3

2

where � is given by equation (1.1c).

In a similar manner, we consider the convergence of the doubly infinite double sum
W(α, β; x) defined by equation (1.1a). If now α and β are real numbers, by setting
z = x

√
m2 + n2 in equation (2.1a), multiplying both sides of the latter by exp(iπαm + iπβn),

and for some sufficiently large fixed integer M , summing the result over m � M and n � M ,
we have for x > 0∑
m,n�M

eiπ(αm+βn)
pFp+1[(ap); (bp+1); −(m2 + n2)x2]

=
{

p∑
k=1

Ak

x2ak

∑
m,n�M

eiπ(αm+βn)

(m2 + n2)ak
+

1

2

Ap+1

x2η

(
e−iω

∑
m,n�M

ei(παm+πβn+2x
√
m2+n2)

(m2 + n2)η

+eiω
∑

m,n�M

ei(παm+πβn−2x
√
m2+n2)

(m2 + n2)η

)}[
1 + O

(
1

x2

)]
(2.3a)

where ω = πη − O(1/x) and η is given by equation (2.1b). Since α and β are arbitrary real
numbers, we see without loss of generality that the convergence of W(α, β; x) is determined
by the convergence of the three m, n-summations in equation (2.3a).

The third sum need not be considered separately so for conciseness, we denote the first and
second m, n-summations on the right-hand side of equation (2.3a) by S and T , respectively,
where in the sum T values of x �= 0 are real. Obviously, necessary conditions that S and T

converge, respectively, are

Re(ak) > 0 (1 � k � p) Re(�) > 1
2 (2.3b)

the latter of which follows from equation (2.1b), since Re(η) > 0. In fact, the inequalities
Re(ak) > 0 (1 � k � p) guarantee the ordinary convergence of S provided that both α and
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β are not multiples of 2. This is easily verified by applying a theorem due to Hardy to the
example given in [4, p 97] with vm,n ≡ (m2 + n2)−η.

Furthermore, both S and T converge absolutely, respectively, provided that

Re(ak) > 1 (1 � k � p) Re(�) > 5
2 (2.3c)

(see p 86, example 3 of [4] and p 52 of [12]), the latter of which follows from equation (2.1b),
since Re(η) > 1.

However, determination of the ordinary convergence of T (and thus also W(α, β; x)) is
problematic. Indeed, Borwein and Borwein have concluded in [3] that even demonstrating
ordinary convergence for certain specializations of T ‘involves unresolved questions of a deep
and delicate number-theoretic nature’. However, since we shall be able to glean additional
information (albeit heuristic in nature) from the development and actual representation for
W(α, β; x) deduced in section 4, we shall conclude the analysis of the convergence criteria
for W(α, β; x) in that section.

3. Representation for S(α; x)

In the following we shall utilize the integral representation for pFp+1[− 1
4 t

2] given by

pFp+1
[
(ap); (bp+1); − 1

4 t
2
]

= 2√
π

�((bp+1))

�((ap))

�((ap) − 1
2 )

�((bp+1) − 1
2 )

∫ 1

0
cos(tx)p+1Fp

[
3
2 − (bp+1) ;
3
2 − (ap) ; x2

]
dx

+
2√
π

�((bp+1))

�((ap))

p∑
k=1

�( 1
2 − ak)�((ap)

∗ − ak)

�((bp+1) − ak)

×
∫ 1

0
(x2)ak−1/2 cos(tx)p+1Fp

[
1 + ak − (bp+1) ;
1
2 + ak, 1 + ak − (ap)

∗ ; x2

]
dx (3.1a)

where t is a real number and for 1 � k � p

Re(ak) > 0 Re(�) > 1
2 . (3.1b)

This result is easily obtained by computing the inverse of the cosine transform of pFp+1[−x2]
given in [10, lemma 1].

By making simple transformations, equation (3.1a) may be written as

pFp+1[(ap); (bp+1); −t2x2] = 1

2
√
π

1

x

�((bp+1))

�((ap))

�((ap) − 1
2 )

�((bp+1) − 1
2 )

×
∫
ξ 2�4x2

e−itξ
p+1Fp

[
3
2 − (bp+1) ;
3
2 − (ap) ;

ξ 2

4x2

]
dξ

+
1√
π

�((bp+1))

�((ap))

p∑
k=1

�( 1
2 − ak)�((ap)

∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak

×
∫
ξ 2�4x2

e−itξ (ξ 2)ak−
1
2
p+1Fp

[
1 + ak − (bp+1) ;
1
2 + ak, 1 + ak − (ap)

∗ ;
ξ 2

4x2

]
dξ (3.2)

where x > 0, the integrations are over the interval −2x � ξ � 2x, and the conditional
inequalities (3.1b) hold true.
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Next, in equation (3.2) by setting t = m and inserting the result for pFp+1[−m2x2] into
equation (1.3) we obtain

S(α; x) = 1

2
√
π

1

x

�((bp+1))

�((ap))

�((ap) − 1
2 )

�((bp+1) − 1
2 )

×
∫
ξ 2�4x2

∑
m∈Z

ei(πα−ξ)m
p+1Fp

[
3
2 − (bp+1) ;
3
2 − (ap) ;

ξ 2

4x2

]
dξ

+
1√
π

�((bp+1))

�((ap))

p∑
k=1

�( 1
2 − ak)�((ap)

∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak

×
∫
ξ 2�4x2

∑
m∈Z

ei(πα−ξ)m(ξ 2)ak−
1
2
p+1Fp

[
1 + ak − (bp+1) ;
1
2 + ak, 1 + ak − (ap)

∗ ;
ξ 2

4x2

]
dξ

(3.3)

where the order of summation and integration have been interchanged in each term. The
m-summations in this result may be rewritten by employing the identity for real µ:∑

m∈Z
eiµm = 2π

∑
m∈Z

δ(µ − 2πm) (3.4)

(see [13], p 189, equation (17)), where δ is the delta function (or functional). Now setting
µ = πα − ξ , replacing each sum in equation (3.3) by the right-hand side of equation (3.4),
interchanging again the order of summation and integration in both terms, we have immediately
upon performing the required formal term-by-term integrations

Theorem 1. For x > 0 and real numbers α

∑
m∈Z

eiπαm
pFp+1[(ap); (bp+1); −m2x2] =

√
π

x

�((bp+1))

�((ap))

�((ap) − 1
2 )

�((bp+1) − 1
2 )

×
(α+2m)2π2�4x2∑

m∈Z
p+1Fp

[
3
2 − (bp+1) ;
3
2 − (ap) ;

(α + 2m)2π2

4x2

]

+2
√
π
�((bp+1))

�((ap))

p∑
k=1

�( 1
2 − ak)�((ap)

∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak

×
(α+2m)2π2�4x2∑

m∈Z
((α + 2m)2π2)ak−1/2

×p+1Fp

[
1 + ak − (bp+1) ;
1
2 + ak, 1 + ak − (ap)

∗ ;
(α + 2m)2π2

4x2

]
. (3.5)

Convergence of the doubly infinite sum on the left-hand side of equation (3.5) and the
finite number of generalized hypergeometric functions on the right-hand side are guaranteed
by the convergence criteria given in lemma 1. We mention that by applying equation (3.4) to
equation (3.3), we have essentially made use of a form of the 1D Poisson summation formula
(see [13, p 189]).
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4. Representation for W (α, β; x)

Similarly, we shall employ the 2D Poisson summation formula to obtain a closed-form
representation for W(α, β; x). To this end, we shall have to evaluate the 2D Fourier transform
F of the generalized hypergeometric function pFp+1[−t2(x2 + y2)], where t > 0:

F{pFp+1[(ap); (bp+1); −t2(x2 + y2)]}

=
∫ ∞

−∞

∫ ∞

−∞
eiξxeiωy

pFp+1[(ap); (bp+1); −t2(x2 + y2)] dx dy

=
∫ ∞

0
σpFp+1[(ap); (bp+1); −t2σ 2]

∫ 2π

0
eiσ(ξ cos θ+ω sin θ) dθ dσ

which results from the polar coordinate transformation x = σ cos θ , y = σ sin θ . Furthermore,
since

J0(σ
√
ξ 2 + ω2) = 1

2π

∫ 2π

0
eiσ(ξ cos θ+ω sin θ) dθ

we have

F{pFp+1[(ap); (bp+1); −t2(x2 + y2)]}

= 2π
∫ ∞

0
σJ0(σ

√
ξ 2 + ω2)pFp+1[(ap); (bp+1); −t2σ 2] dσ. (4.1a)

The discontinuous integral in equation (4.1a) exists provided that for 1 � k � p

Re(ak) > 1
4 Re(�) > 1 (4.1b)

and may be evaluated by using [9, equations (4.4)]. Thus we see that the 2D Fourier transform
of pFp+1[−t2(x2 + y2)] vanishes when ξ 2 + ω2 > 4t2; otherwise when ξ 2 + ω2 < 4t2

F{pFp+1[(ap); (bp+1); −t2(x2 + y2)]} = π

t2

∏p+1
k=1(bk − 1)∏p

k=1(ak − 1)
p+1Fp

[
2 − (bp+1) ;
2 − (ap) ;

ξ 2 + ω2

4t2

]

+
4π

ξ 2 + ω2

�((bp+1))

�((ap))

p∑
k=1

�(1 − ak)�((ap)
∗ − ak)

�((bp+1) − ak)

×
(
ξ 2 + ω2

4t2

)ak

p+1Fp

[
1 + ak − (bp+1) ;
ak, 1 + ak − (ap)

∗ ;
ξ 2 + ω2

4t2

]

where the inequalities (4.1b) hold true.
Inversion of the Fourier transform given above now yields for t > 0

pFp+1[(ap); (bp+1); −t2(x2 + y2)] = 1

4π

∏p+1
k=1(bk − 1)∏p

k=1(ak − 1)

1

t2

×
∫ ∫

ξ 2+ω2�4t2
e−ixξe−iyω

p+1Fp

[
2 − (bp+1) ;
2 − (ap) ;

ξ 2 + ω2

4t2

]
dξ dω

+
1

π

�((bp+1))

�((ap))

p∑
k=1

�(1 − ak)�((ap)
∗ − ak)

�((bp+1) − ak)

(
1

4t2

)ak

×
∫ ∫

ξ 2+ω2�4t2
e−ixξe−iyω(ξ 2 + ω2)ak−1

×p+1Fp

[
1 + ak − (bp+1) ;
ak, 1 + ak − (ap)

∗ ;
ξ 2 + ω2

4t2

]
dξ dω (4.2a)
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where for 1 � k � p

Re(ak) > 1
4 Re(�) > 1 (4.2b)

which guarantee the convergence of both double integrals.
In equation (4.2a) replace x by m, y by n, then set t = x, multiply both sides by

exp iπ(αm+βn) and sum the resulting equation overm ∈ Z, n ∈ Z. Thus, for realα by defining
(−1)mα ≡ exp(iπαm) and recalling the definition of W(α, β; x) given by equation (1.1a), we
have for x > 0

W(α, β; x) = 1

4π

∏p+1
k=1(bk − 1)∏p

k=1(ak − 1)

1

x2

∫ ∫
ξ 2+ω2�4x2

p+1Fp

[
2 − (bp+1) ;
2 − (ap) ;

ξ 2 + ω2

4x2

]

×
∑
m∈Z

ei(πα−ξ)m
∑
n∈Z

ei(πβ−ω)n dξ dω +
1

π

�((bp+1))

�((ap))

×
p∑

k=1

�(1 − ak)�((ap)
∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak ∫ ∫
ξ 2+ω2�4x2

(ξ 2 + ω2)ak−1

×p+1Fp

[
1 + ak − (bp+1) ;
ak, 1 + ak − (ap)

∗ ;
ξ 2 + ω2

4x2

]∑
m∈Z

ei(πα−ξ)m
∑
n∈Z

ei(πβ−ω)n dξ dω

(4.3)

where the order of summations and integrations have been interchanged in both terms. Now
by employing equation (3.4) with µ = πα − ξ and µ = πβ − ω, respectively, so that each
summation of exponentials in equation (4.3) is replaced by a summation of delta functions,
and again in both terms interchanging the order of integrations and summations we obtain

W(α, β; x) = π

x2

∏p+1
k=1(bk − 1)∏p

k=1(ak − 1)

∑
m∈Z

∑
n∈Z

∫ ∫
ξ 2+ω2�4x2

p+1Fp

[
2 − (bp+1) ;
2 − (ap) ;

ξ 2 + ω2

4x2

]

×δ(πα − ξ − 2πm)δ(πβ − ω − 2πn) dξ dω

+4π
�((bp+1))

�((ap))

p∑
k=1

�(1 − ak)�((ap)
∗ − ak)

�((bp+1) − ak)

(
1

4x2

)ak

×
∑
m∈Z

∑
n∈Z

∫ ∫
ξ 2+ω2�4x2

(ξ 2 + ω2)ak−1
p+1Fp

[
1 + ak − (bp+1) ;
ak, 1 + ak − (ap)

∗ ;
ξ 2 + ω2

4x2

]

×δ(πα − ξ − 2πm)δ(πβ − ω − 2πn) dξ dω.

Finally, on performing the required formal term-by-term integrations with regard to properties
of the delta function we deduce

Theorem 2. For x > 0, real numbers α and β∑
m∈Z

∑
n∈Z

eiπαmeiπβn
pFp+1[(ap); (bp+1); −x2(m2 + n2)] = π

x2

∏p+1
k=1(bk − 1)∏p

k=1(ak − 1)

×
(α+2m)2+(β+2n)2�4x2/π2∑

m∈Z,n∈Z
p+1Fp

[
2 − (bp+1) ;
2 − (ap) ;

π2

4x2
((α + 2m)2 + (β + 2n)2)

]

+
4

π

�((bp+1))

�((ap))

p∑
k=1

�(1 − ak)�((ap)
∗ − ak)

�((bp+1) − ak)

(
π2

4x2

)ak
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×
(α+2m)2+(β+2n)2�4x2/π2∑

m∈Z,n∈Z
((α + 2m)2 + (β + 2n)2)ak−1

×p+1Fp

[
1 + ak − (bp+1) ;
ak, 1 + ak − (ap)

∗ ;
π2

4x2
((α + 2m)2 + (β + 2n)2)

]
. (4.4)

Since both sides of equation (4.4) are even functions of x, the result holds for all real
x �= 0. Convergence criteria for W(α, β; x) whose representation is given by the latter result
are summarized in lemma 2 below.

The conditional inequalities (4.2b) are evidently necessary for the convergence of
W(α, β; x), since they are not only consistent, but also somewhat stronger than the necessary
conditions for convergence of W(α, β; x) given by the conditional inequalities (2.3b). We also
note that if x is such that the equality holds for a pair of integers (m, n) in the upper limit of the
m, n-summations on the right-hand side of equation (4.4), then in order to ensure convergence
of the generalized hypergeometric series p+1Fp [1], we need only require Re(�) > 2. This is
consistent with the latter of the slightly stronger conditional inequalities (2.3c) which provide
for the absolute convergence of the sum T in equation (2.3a). These observations together
with those noted in section 2 are now summarized below by using the strongest applicable
inequalities. Thus we have

Conjectural lemma 2. For real α, β, and x > 0, the sum W(α, β; x) converges under the
conditions of each of the following four cases where 1 � k � p.

(a) If α and β are not multiples of 2, and (α + 2m)2 + (β + 2n)2 < 4x2/π2, then

Re(ak) > 1
4 Re(�) > 1.

(b) If one of α and β is a multiple of 2, and (α + 2m)2 + (β + 2n)2 < 4x2/π2, then

Re(ak) > 1 Re(�) > 1.

(c) If α and β are not multiples of 2, and (α + 2m)2 + (β + 2n)2 � 4x2/π2, then

Re(ak) > 1
4 Re(�) > 2.

(d) If one of α and β is a multiple of 2, and (α + 2m)2 + (β + 2n)2 � 4x2/π2, then

Re(ak) > 1 Re(�) > 2.

Furthermore, for real α, β, and x > 0, the sum W(α, β; x) converges absolutely provided
that

Re(ak) > 1 Re(�) > 5
2

where � is given by equation (1.1c).

In conclusion, we emphasize that since lemma 2 is based in part on heuristic and formal
methods, it is conjectural in nature. Moreover, a rigorous proof may involve (as mentioned
earlier in section 2) heretofore unresolved questions which, it is hoped, may stimulate further
research.
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